
WALT on Grid'5000 (with NBFS)

or how to pack all my activities into a single project ;)

Etienne Dublé (LIG / CNRS)

Workshop Axes, May 2021

Agenda

Motivation

Sample use case

WalT & fast OS prototyping

OS deployment rework

Related news

Foreword

A word about Grid'5000

G5K: What is it?

� Infrastructure as a Service

� 8 sites in France

� Accessible to academic community

1

A word about WALT

WALT: What is it?

� Software to build your own versatile platform

� AFAIK deployed in 4 labs (France, Turkey) and

at Schneider Electric

� Open source project

2

Why WALT on G5K?

� Why WALT on G5K?

1. "I want to run my WALT experiment

unmodi�ed on a larger testbed"
2. WALT could bring some useful features on top

of G5K

� fast OS prototyping

� seamless multi-site experiments

3. It could be an entrypoint for new users who

want to try WALT

� Limits:

� Features are limited to what both platforms

can do (simpli�ed G5K resources selection,

wired network only, no physical access to

devices, etc.)

3

Why WALT on G5K?

� Why WALT on G5K?

1. "I want to run my WALT experiment

unmodi�ed on a larger testbed"

2. WALT could bring some useful features on top
of G5K

� fast OS prototyping

� seamless multi-site experiments

3. It could be an entrypoint for new users who

want to try WALT

� Limits:

� Features are limited to what both platforms

can do (simpli�ed G5K resources selection,

wired network only, no physical access to

devices, etc.)

3

Why WALT on G5K?

� Why WALT on G5K?

1. "I want to run my WALT experiment

unmodi�ed on a larger testbed"
2. WALT could bring some useful features on top

of G5K

� fast OS prototyping

� seamless multi-site experiments

3. It could be an entrypoint for new users who

want to try WALT

� Limits:

� Features are limited to what both platforms

can do (simpli�ed G5K resources selection,

wired network only, no physical access to

devices, etc.)

3

Why WALT on G5K?

� Why WALT on G5K?

1. "I want to run my WALT experiment

unmodi�ed on a larger testbed"
2. WALT could bring some useful features on top

of G5K

� fast OS prototyping

� seamless multi-site experiments

3. It could be an entrypoint for new users who

want to try WALT

� Limits:

� Features are limited to what both platforms

can do (simpli�ed G5K resources selection,

wired network only, no physical access to

devices, etc.)

3

Why WALT on G5K?

� Why WALT on G5K?

1. "I want to run my WALT experiment

unmodi�ed on a larger testbed"
2. WALT could bring some useful features on top

of G5K

� fast OS prototyping

� seamless multi-site experiments

3. It could be an entrypoint for new users who

want to try WALT

� Limits:

� Features are limited to what both platforms

can do (simpli�ed G5K resources selection,

wired network only, no physical access to

devices, etc.)

3

Agenda

Motivation

Sample use case

WalT & fast OS prototyping

OS deployment rework

Related news

Sample use case

$

4

Sample use case

$ ssh grenoble.g5k

4

Sample use case

$ ssh grenoble.g5k
>

4

Sample use case

$ ssh grenoble.g5k
> pip3 install walt-client[g5k]

4

Sample use case

$ ssh grenoble.g5k
> pip3 install walt-client[g5k]

4

Sample use case

>

4

Sample use case

> walt g5k deploy

4

Sample use case

> walt g5k deploy
which resources?

4

Sample use case

> walt g5k deploy
which resources? [...]

4

Sample use case

> walt g5k deploy
which resources? [...]

4

Sample use case

> walt g5k deploy
which resources? [...]

4

Sample use case

> walt g5k deploy
which resources? [...]

4

Sample use case

> walt g5k deploy
which resources? [...]

4

Sample use case

> walt g5k deploy
done.

4

Sample use case

>

4

Sample use case

> walt image shell ...

4

Sample use case

> walt image shell ...

4

Sample use case

> walt image [clone|publish|...]

4

Sample use case

>

4

Sample use case

> walt node boot <nodes> <image>

4

Sample use case

> walt node boot <nodes> <image>

4

Agenda

Motivation

Sample use case

WalT & fast OS prototyping

OS deployment rework

Related news

Fast OS prototyping using WalT

WalT allows fast OS prototyping:

� You can modify an OS image very easily...

� walt image shell <image> (among other commands)

� ... and save your changes in a few seconds

(relies on docker image layered approach)

� You can deploy an OS image on nodes quickly:

� walt node boot <nodes> <image>

� Nodes are usually booted in less than 1 min

(on a local testbed with Raspberry Pi boards)

� Reproducibility is ensured at each node reboot

� Nodes are stateless

� Changes made wrt. image �les are discarded on reboot

5

Fast OS prototyping using WalT

WalT allows fast OS prototyping:

� You can modify an OS image very easily...

� walt image shell <image> (among other commands)

� ... and save your changes in a few seconds

(relies on docker image layered approach)

� You can deploy an OS image on nodes quickly:

� walt node boot <nodes> <image>

� Nodes are usually booted in less than 1 min

(on a local testbed with Raspberry Pi boards)

� Reproducibility is ensured at each node reboot

� Nodes are stateless

� Changes made wrt. image �les are discarded on reboot

5

Fast OS prototyping using WalT

WalT allows fast OS prototyping:

� You can modify an OS image very easily...

� walt image shell <image> (among other commands)

� ... and save your changes in a few seconds

(relies on docker image layered approach)

� You can deploy an OS image on nodes quickly:

� walt node boot <nodes> <image>

� Nodes are usually booted in less than 1 min

(on a local testbed with Raspberry Pi boards)

� Reproducibility is ensured at each node reboot

� Nodes are stateless

� Changes made wrt. image �les are discarded on reboot

5

Fast OS prototyping using WalT

WalT allows fast OS prototyping:

� You can modify an OS image very easily...

� walt image shell <image> (among other commands)

� ... and save your changes in a few seconds

(relies on docker image layered approach)

� You can deploy an OS image on nodes quickly:

� walt node boot <nodes> <image>

� Nodes are usually booted in less than 1 min

(on a local testbed with Raspberry Pi boards)

� Reproducibility is ensured at each node reboot

� Nodes are stateless

� Changes made wrt. image �les are discarded on reboot

5

Agenda

Motivation

Sample use case

WalT & fast OS prototyping

OS deployment rework

Related news

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

About network boot

� OS image remains on walt server only

(it is never transfered as a whole to the node)

� Server exposes content of OS image as an NFS network share

� When booted, the whole OS of node is seated on this NFS share

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

About network boot

� OS image remains on walt server only

(it is never transfered as a whole to the node)

� Server exposes content of OS image as an NFS network share

� When booted, the whole OS of node is seated on this NFS share

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

About network boot

� OS image remains on walt server only

(it is never transfered as a whole to the node)

� Server exposes content of OS image as an NFS network share

� When booted, the whole OS of node is seated on this NFS share

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

About network boot

� OS image remains on walt server only

(it is never transfered as a whole to the node)

� Server exposes content of OS image as an NFS network share

� When booted, the whole OS of node is seated on this NFS share

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

Step Description Delay A

0 Server: Route requests to new image fast

1 Node: Hardware reboot ≈2min10

2 Node: Network bootloader fast

3 Node: Wait for OS boot ≈15s
Total procedure ≈2min30

Delay B

fast

≈2min10

≈4min

≈35s
≈6min50

� Delay B: walt node and walt server are at a di�erent G5K site.

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

Step Description Delay A

0 Server: Route requests to new image fast

1 Node: Hardware reboot ≈2min10

2 Node: Network bootloader fast

3 Node: Wait for OS boot ≈15s
Total procedure ≈2min30

Delay B

fast

≈2min10

≈4min

≈35s
≈6min50

� Delay B: walt node and walt server are at a di�erent G5K site.

6

WalT node deployment

How is OS deployment handled by WalT?

� As a regular network boot procedure

� Steps, for a light debian OS:

Step Description Delay A

0 Server: Route requests to new image fast

1 Node: Hardware reboot ≈2min10

2 Node: Network bootloader fast

3 Node: Wait for OS boot ≈15s
Total procedure ≈2min30

Delay B

fast

≈2min10

≈4min

≈35s
≈6min50

� Delay B: walt node and walt server are at a di�erent G5K site.

6

WalT node deployment � avoiding TFTP

� Goal: Improve the slow bootloader step in case B

� Diagnosis:

� Kernel and initrd (≈30MB) downloaded from server site to node site

� iPXE bootloader uses TFTP protocol for this

� Transfers need ≈30 000 round-trips between sites to complete!

� Solution: let iPXE use HTTP instead of TFTP.

7

WalT node deployment � avoiding TFTP

� Goal: Improve the slow bootloader step in case B

� Diagnosis:

� Kernel and initrd (≈30MB) downloaded from server site to node site

� iPXE bootloader uses TFTP protocol for this

� Transfers need ≈30 000 round-trips between sites to complete!

� Solution: let iPXE use HTTP instead of TFTP.

7

WalT node deployment � avoiding TFTP

� Goal: Improve the slow bootloader step in case B

� Diagnosis:

� Kernel and initrd (≈30MB) downloaded from server site to node site

� iPXE bootloader uses TFTP protocol for this

� Transfers need ≈30 000 round-trips between sites to complete!

� Solution: let iPXE use HTTP instead of TFTP.

7

WalT node deployment � avoiding TFTP

� Goal: Improve the slow bootloader step in case B

� Diagnosis:

� Kernel and initrd (≈30MB) downloaded from server site to node site

� iPXE bootloader uses TFTP protocol for this

� Transfers need ≈30 000 round-trips between sites to complete!

� Solution: let iPXE use HTTP instead of TFTP.

7

WalT node deployment � avoiding TFTP

� Goal: Improve the slow bootloader step in case B

� Diagnosis:

� Kernel and initrd (≈30MB) downloaded from server site to node site

� iPXE bootloader uses TFTP protocol for this

� Transfers need ≈30 000 round-trips between sites to complete!

� Solution: let iPXE use HTTP instead of TFTP.

7

WalT node deployment � avoiding TFTP

� New numbers:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node: Hardware reboot ≈2min10 ≈2min10

2 Node: Network bootloader fast ≈35s
3 Node: Wait for OS boot ≈15s ≈35s

Total procedure ≈2min30 ≈3min25

� Result: this delay was reduced from ≈4min to ≈35s.
� Analysis: better, but such a transfer between sites should be <1s.

(Bootloader network driver is basic and suboptimal)

8

WalT node deployment � avoiding TFTP

� New numbers:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node: Hardware reboot ≈2min10 ≈2min10

2 Node: Network bootloader fast ≈35s
3 Node: Wait for OS boot ≈15s ≈35s

Total procedure ≈2min30 ≈3min25

� Result: this delay was reduced from ≈4min to ≈35s.

� Analysis: better, but such a transfer between sites should be <1s.

(Bootloader network driver is basic and suboptimal)

8

WalT node deployment � avoiding TFTP

� New numbers:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node: Hardware reboot ≈2min10 ≈2min10

2 Node: Network bootloader fast ≈35s
3 Node: Wait for OS boot ≈15s ≈35s

Total procedure ≈2min30 ≈3min25

� Result: this delay was reduced from ≈4min to ≈35s.
� Analysis: better, but such a transfer between sites should be <1s.

(Bootloader network driver is basic and suboptimal)

8

WalT node deployment � avoiding TFTP

� New numbers:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node: Hardware reboot ≈2min10 ≈2min10

2 Node: Network bootloader fast ≈35s
3 Node: Wait for OS boot ≈15s ≈35s

Total procedure ≈2min30 ≈3min25

� Result: this delay was reduced from ≈4min to ≈35s.
� Analysis: better, but such a transfer between sites should be <1s.

(Bootloader network driver is basic and suboptimal)

8

WalT node deployment � avoiding hardware reboot

� Goal: Avoid hardware reboot

� Idea: Kexec technique can be used to directly boot a new kernel

(bypassing hardware reboot)

� Solution:

� Implement this kexec-boot in [image]:/bin/walt-reboot

� Mimic network bootloader behaviour:

download and boot the kernel of the new image

(not the current one!)

9

WalT node deployment � avoiding hardware reboot

� Goal: Avoid hardware reboot

� Idea: Kexec technique can be used to directly boot a new kernel

(bypassing hardware reboot)

� Solution:

� Implement this kexec-boot in [image]:/bin/walt-reboot

� Mimic network bootloader behaviour:

download and boot the kernel of the new image

(not the current one!)

9

WalT node deployment � avoiding hardware reboot

� Goal: Avoid hardware reboot

� Idea: Kexec technique can be used to directly boot a new kernel

(bypassing hardware reboot)

� Solution:

� Implement this kexec-boot in [image]:/bin/walt-reboot

� Mimic network bootloader behaviour:

download and boot the kernel of the new image

(not the current one!)

9

WalT node deployment � avoiding hardware reboot

� Goal: Avoid hardware reboot

� Idea: Kexec technique can be used to directly boot a new kernel

(bypassing hardware reboot)

� Solution:

� Implement this kexec-boot in [image]:/bin/walt-reboot

� Mimic network bootloader behaviour:

download and boot the kernel of the new image

(not the current one!)

9

WalT node deployment � avoiding hardware reboot

� We now have di�erent steps:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast <1s

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈35s
Total procedure ≈20s ≈40s

� Results:

� hardware reboot delay completely eliminated.

� kernel & initrd now transfered by walt-reboot (was iPXE)

� Acceptable delay for the whole procedure.

10

WalT node deployment � avoiding hardware reboot

� We now have di�erent steps:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast <1s

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈35s
Total procedure ≈20s ≈40s

� Results:

� hardware reboot delay completely eliminated.

� kernel & initrd now transfered by walt-reboot (was iPXE)

� Acceptable delay for the whole procedure.

10

WalT node deployment � avoiding hardware reboot

� We now have di�erent steps:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast <1s

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈35s
Total procedure ≈20s ≈40s

� Results:

� hardware reboot delay completely eliminated.

� kernel & initrd now transfered by walt-reboot (was iPXE)

� Acceptable delay for the whole procedure.

10

WalT node deployment � avoiding hardware reboot

� We now have di�erent steps:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast <1s

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈35s
Total procedure ≈20s ≈40s

� Results:

� hardware reboot delay completely eliminated.

� kernel & initrd now transfered by walt-reboot (was iPXE)

� Acceptable delay for the whole procedure.

10

WalT node deployment � avoiding hardware reboot

� We now have di�erent steps:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast <1s

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈35s
Total procedure ≈20s ≈40s

� Results:

� hardware reboot delay completely eliminated.

� kernel & initrd now transfered by walt-reboot (was iPXE)

� Acceptable delay for the whole procedure.

10

WalT node deployment � avoiding NFS

� Goal: Reduce OS boot delay in case B

� Diagnosis: NFS is slow when client-server latency is high.

� Solution: use NBFS instead.

About NBFS

� An experimental network �lesystem I am working on.

� Specialized for network booting.

� Uses speculation: good performance even when latency is high.

� Improves responsiveness after bootup too (e.g. reduced ssh login delay).

� A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.

11

WalT node deployment � avoiding NFS

� Goal: Reduce OS boot delay in case B

� Diagnosis: NFS is slow when client-server latency is high.

� Solution: use NBFS instead.

About NBFS

� An experimental network �lesystem I am working on.

� Specialized for network booting.

� Uses speculation: good performance even when latency is high.

� Improves responsiveness after bootup too (e.g. reduced ssh login delay).

� A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.

11

WalT node deployment � avoiding NFS

� Goal: Reduce OS boot delay in case B

� Diagnosis: NFS is slow when client-server latency is high.

� Solution: use NBFS instead.

About NBFS

� An experimental network �lesystem I am working on.

� Specialized for network booting.

� Uses speculation: good performance even when latency is high.

� Improves responsiveness after bootup too (e.g. reduced ssh login delay).

� A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.

11

WalT node deployment � avoiding NFS

� Goal: Reduce OS boot delay in case B

� Diagnosis: NFS is slow when client-server latency is high.

� Solution: use NBFS instead.

About NBFS

� An experimental network �lesystem I am working on.

� Specialized for network booting.

� Uses speculation: good performance even when latency is high.

� Improves responsiveness after bootup too (e.g. reduced ssh login delay).

� A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.

11

WalT node deployment � avoiding NFS

� New numbers with NBFS instead of NFS:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast fast

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈15s
Total procedure ≈20s ≈20s

� Result: similar delay for remote and local bootup.

12

WalT node deployment � avoiding NFS

� New numbers with NBFS instead of NFS:

Step Description Delay A Delay B

0 Server: Route requests to new image fast fast

1 Node (walt-reboot): get kernel & initrd fast fast

2 Node (walt-reboot): kexec new kernel fast fast

3 Node: Wait for OS boot ≈15s ≈15s
Total procedure ≈20s ≈20s

� Result: similar delay for remote and local bootup.

12

Agenda

Motivation

Sample use case

WalT & fast OS prototyping

OS deployment rework

Related news

Related news

� NBFS is still experimental

� WalT-on-G5K feature planning:

� available with WALT version 8 (end of june)

� NBFS will not be included

� we are discussing with G5K team for improvements / documentation etc.

� G5K team is working on improving kadeploy with kexec too

(near future)

13

More info:

WalT-on-G5K demo: https://vu.fr/walt-on-g5k

WalT website: https://vu.fr/walt

Questions, WalT training requests: etienne.duble@imag.fr

13

https://vu.fr/walt-on-g5k
https://vu.fr/walt
mailto:etienne.duble@imag.fr

	Motivation
	Sample use case
	WalT & fast OS prototyping
	OS deployment rework
	Related news

