WALT on Grid’5000 (with NBFS)

or how to pack all my activities into a single project ;)

Etienne Dublé (LIG / CNRS)
Workshop Axes, May 2021

Motivation

Foreword

TYPES OF COMPUTER PROBLEMS
BY HOW MUCH DEBUGGING THEM MAKES YOUR BRAIN STOP LJORKING
NONE SOME ALloT
T T T T T T L — T T T T

NETWORKING
PRO&LMS

BEFORE NOON, OPD-NUMBERED
PACKETS WERE LAGGY, BUT AFTER
NOON, EVEW-NUMBERED ONES ARE!
IT's THE OFRSITE OF YESTERDAY!

ARE YOU SURE YOURE OKAY?

I FINE AND I BELIEVE &
IV GHOSTS NOW!

N

-,
’

A word about Grid’5000

G5K: What is it?
e Infrastructure as a Service

e 8 sites in France

e Accessible to academic community

A word about WALT

WALT: What is it?
e Software to build your own versatile platform

e AFAIK deployed in 4 labs (France, Turkey) and
at Schneider Electric

e Open source project

Why WALT on G5K?

e Why WALT on G5K?

Why WALT on G5K?

e Why WALT on G5K?

1. "l want to run my WALT experiment
unmodified on a larger testbed"

Why WALT on G5K?

e Why WALT on G5K?
1.

"l'want to run my WALT experiment
unmodified on a larger testbed"

WALT could bring some useful features on top
of G5K

e fast OS prototyping
e seamless multi-site experiments

Why WALT on G5K?

e Why WALT on G5K?
1.

. It could be an entrypoint for new users who

"l'want to run my WALT experiment

unmodified on a larger testbed"
WALT could bring some useful features on top
of G5K

e fast OS prototyping
e seamless multi-site experiments

want to try WALT

Why WALT on G5K?

e Why WALT on G5K?

1. "l want to run my WALT experiment

unmodified on a larger testbed"
2. WALT could bring some useful features on top
of G5K

e fast OS prototyping
e seamless multi-site experiments

3. It could be an entrypoint for new users who
want to try WALT
e Limits:
e Features are limited to what both platforms
can do (simplified G5K resources selection,
wired network only, no physical access to

devices, etc.)

Sample use case

Sample use case

el E | seremmEiLE o1l
ZAMEE H =AM conn
| i gt <A
. s —
Sl [CoI:
:" - G b o
Nodes
, G5K Grenoble G5K Lille
4 e
. i H
4 Frontend

]

use case

$ ssh grenoble.g5k

T e <AIITE R

| = H

<A ITTE

. — “
=
4 i 3
K <A 3
. s \
K AT \
I‘ k.
;. .
K s
4 . .
L G5K Lille Y
.
.
.
B
.
B
.
.
.

use case

T e <AIITE R

| = H

<A ITTE

. — “
=
4 i 3
K <A 3
. s \
K AT \
I‘ k.
;. .
K s
4 . .
L G5K Lille Y
.
.
.
B
.
B
.
.
.

Sample use case

d as d kLA ZATI "
c 'i:'l_"‘ r ; AT « (I R
ZAIIE —
. — - CoN y
y E i I ANE .
. <A1 1 —mH H ZATE .
. ST odes s
0 Nodes v
:‘ Y
q \
K G5K Grenoble G5K Lille)
e i H R
. .
. H f Frontend
.
B

Sample use case

$ ssh grenoble.g5k
> pip3 install walt-client[g5k]

.

coun

, fo =

Bt
,* | WALT client
P ~,

Sample use case

| e -

/ L) o SAMMEEL AT
ZAMEE H . B AT
N 2T = AR H <A

<A1 < [& TS

:" S| XTI [B H -

Nodes ——
B G5K Grenoble G5K Lille
B
y | s d
i . Frontend

]

Sample use case

> walt g5k deploy

e E == = <l
0 AT H AT
A 5
<E i e

AT -
/ Nodes k

) s
} G5K Grenoble G5K Lille i

use case

<A IS

> walt g5k deploy
which resources?

f T e

<A ITTE

|

5

ams

L G5K Grenoble G5K Lille m
e IEH ;

Sample use case

> walt g5k deploy
which resources? [

I A - o L |
A L —
L4 e 11l i Ce - \‘
¢ —
’ S - .
o) 5
p IME .
+ =N 1

e IEH

Sample use case

> walt g5k deploy
which resources? [

P v I i W
' =aamEp] = A e = it 5
0 LTI ST oy T \
K e S Y H == \
o e o H s)
P lodes \
0' “
- G5K Lille i
I’ l I “
. \
y Frontend A
.
"' “
) \
e ‘\
___ \

Sample use case

> walt g5k deploy
which resources? [

o i e | Y
e 1N | K
e T oy I \
e i 5
‘l
lode: Y
.
s
G5K Lille i
f i
Frontend A
‘I
s
\
--- |
--- ‘n

Sample use case

G5K Lille

Sample use case

o i e |)
ST b == "
- <A, E Uy .‘
E 3| R
"
]
lode: \
"
'
G5K Lill '
f q “‘
Frontend .
5K global
VLAN

Sample use case

o rarmLl sermmmi
e)N IR “
— |

\
'y
G5K Lill

"
5K global
VLAN

Sample use case

G5K Lill

Sample use case

{ wram i ""“
= AT [== auTy k
e)y .
= | \
\
\
lode: 3
\
\
G5K Lill

Sample use case

o i e |)
ST b == "
- <A, E Uy .‘
E 3| R
"
]
lode: \
"
'
G5K Lill '
f q “‘
Frontend .
5K global
VLAN

Sample use case

ST A
[=T K
sE AT 3

G5K Lill \

Frontend R

Sample use case

ST A
[=T K
sE AT 3

G5K Lill \

Frontend R

Sample use case

G5K Lill

Sample use case

(WalT image,|
pc-realtime

[= ST Y
ST | = Y\
i TR | = eaTe| \
e Lol K
\
\
lode: Y
\
\
G5K Lill S
f f
Frontend A
‘I
\
\
--- |
--- ‘l

WalT & fast OS prototyping

Fast OS prototyping using WalT

WalT allows fast OS prototyping:

Fast OS prototyping using WalT

WalT allows fast OS prototyping:
e You can modify an OS image very easily...

e walt image shell <image> (among other commands)
e ... and save your changes in a few seconds
(relies on docker image layered approach)

Fast OS prototyping using WalT

WalT allows fast OS prototyping:
e You can modify an OS image very easily...
e walt image shell <image> (among other commands)
e ... and save your changes in a few seconds
(relies on docker image layered approach)
e You can deploy an OS image on nodes quickly:
e walt node boot <nodes> <image>
e Nodes are usually booted in less than 1 min
(on a local testbed with Raspberry Pi boards)

Fast OS prototyping using WalT

WalT allows fast OS prototyping:
e You can modify an OS image very easily...
e walt image shell <image> (among other commands)
e ... and save your changes in a few seconds
(relies on docker image layered approach)
e You can deploy an OS image on nodes quickly:
e walt node boot <nodes> <image>
e Nodes are usually booted in less than 1 min
(on a local testbed with Raspberry Pi boards)
e Reproducibility is ensured at each node reboot

e Nodes are stateless
e Changes made wrt. image files are discarded on reboot

OS deployment rework

WalT node deployment

How is OS deployment handled by WalT?

WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)

WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)

e Server exposes content of OS image as an NFS network share

WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)

e Server exposes content of OS image as an NFS network share

e When booted, the whole OS of node is seated on this NFS share

WalT node deployment

How is OS deployment handled by WalT?
e As a regular network boot procedure

e Steps, for a light debian OS:

Step | Description Delay A
0 Server: Route requests to new image fast
1 Node: Hardware reboot ~2minl0
2 Node: Network bootloader fast
3 Node: Wait for OS boot ~15s

Total procedure ~2min30

WalT node deployment

How is OS deployment handled by WalT?
e As a regular network boot procedure

e Steps, for a light debian OS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~4min
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~6min50

e Delay B: walt node and walt server are at a different G5K site.

WalT node deployment

How is OS deployment handled by WalT?
e As a regular network boot procedure

e Steps, for a light debian OS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~4min
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~6min50

e Delay B: walt node and walt server are at a different G5K site.

WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B

WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B
e Diagnosis:

e Kernel and initrd (=30MB) downloaded from server site to node site

WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B

e Diagnosis:
e Kernel and initrd (=30MB) downloaded from server site to node site
e iPXE bootloader uses TFTP protocol for this

WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B
e Diagnosis:
e Kernel and initrd (=30MB) downloaded from server site to node site

e iPXE bootloader uses TFTP protocol for this
e Transfers need ~30 000 round-trips between sites to complete!

WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B
e Diagnosis:
e Kernel and initrd (=30MB) downloaded from server site to node site

e iPXE bootloader uses TFTP protocol for this
e Transfers need ~30 000 round-trips between sites to complete!

e Solution: let iPXE use HTTP instead of TFTP.

WalT node deployment — avoiding TFTP

e New numbers:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~35s
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~3min25

WalT node deployment — avoiding TFTP

e New numbers:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~35s
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~3min25

e Result: this delay was reduced from ~4min to ~35s.

WalT node deployment — avoiding TFTP

e New numbers:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~35s
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~3min25

e Result: this delay was reduced from ~4min to ~35s.

e Analysis: better, but such a transfer between sites should be <1s.
(Bootloader network driver is basic and suboptimal)

WalT node deployment — avoiding TFTP

e New numbers:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node: Hardware reboot ~2minl0 | ~2minl0
2 Node: Network bootloader fast ~35s
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~2min30 | ~3min25

e Result: this delay was reduced from ~4min to ~35s.

e Analysis: better, but such a transfer between sites should be <1s.
(Bootloader network driver is basic and suboptimal)

WalT node deployment — avoiding hardware reboot

e Goal: Avoid hardware reboot

WalT node deployment — avoiding hardware reboot

e Goal: Avoid hardware reboot

e ldea: Kexec technique can be used to directly boot a new kernel
(bypassing hardware reboot)

WalT node deployment — avoiding hardware reboot

e Goal: Avoid hardware reboot

e ldea: Kexec technique can be used to directly boot a new kernel
(bypassing hardware reboot)

e Solution:

e Implement this kexec-boot in [image] :/bin/walt-reboot

WalT node deployment — avoiding hardware reboot

e Goal: Avoid hardware reboot

e ldea: Kexec technique can be used to directly boot a new kernel
(bypassing hardware reboot)
e Solution:
e Implement this kexec-boot in [image] :/bin/walt-reboot
e Mimic network bootloader behaviour:
download and boot the kernel of the new image
(not the current one!)

WalT node deployment — avoiding hardware reboot

e We now have different steps:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast <1s
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~20s ~40s

10

WalT node deployment — avoiding hardware reboot

e We now have different steps:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast <1s
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~20s ~40s
e Results:

e hardware reboot delay completely eliminated.

10

WalT node deployment — avoiding hardware reboot

e We now have different steps:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast <1s
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~20s ~40s
e Results:

e hardware reboot delay completely eliminated.
e kernel & initrd now transfered by walt-reboot (was iPXE)

10

WalT node deployment — avoiding hardware reboot

e We now have different steps:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast <1s
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~20s ~40s
e Results:

e hardware reboot delay completely eliminated.
e kernel & initrd now transfered by walt-reboot (was iPXE)
e Acceptable delay for the whole procedure.

10

WalT node deployment — avoiding hardware reboot

e We now have different steps:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast <1s
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~35s

Total procedure ~20s ~40s
e Results:

e hardware reboot delay completely eliminated.
e kernel & initrd now transfered by walt-reboot (was iPXE)
e Acceptable delay for the whole procedure.

10

WalT node deployment — avoiding NFS

e Goal: Reduce OS boot delay in case B

11

WalT node deployment — avoiding NFS

e Goal: Reduce OS boot delay in case B

e Diagnosis: NFS is slow when client-server latency is high.

11

WalT node deployment — avoiding NFS

e Goal: Reduce OS boot delay in case B
e Diagnosis: NFS is slow when client-server latency is high.

e Solution: use NBFS instead.

11

WalT node deployment — avoiding NFS

e Goal: Reduce OS boot delay in case B
e Diagnosis: NFS is slow when client-server latency is high.

e Solution: use NBFS instead.

About NBFS

e An experimental network filesystem | am working on.

Specialized for network booting.

Uses speculation: good performance even when latency is high.

Improves responsiveness after bootup too (e.g. reduced ssh login delay).

A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.

11

WalT node deployment — avoiding NFS

e New numbers with NBFS instead of NFS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast fast
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~15s

Total procedure ~20s ~20s

12

WalT node deployment — avoiding NFS

e New numbers with NBFS instead of NFS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast fast
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~15s

Total procedure ~20s ~20s

e Result: similar delay for remote and local bootup.

12

Related news

Related news

e NBFS is still experimental
e WalT-on-G5K feature planning:

e available with WALT version 8 (end of june)
e NBFS will not be included
e we are discussing with G5K team for improvements / documentation etc.

e G5K team is working on improving kadeploy with kexec too
(near future)

13

More info:

WalT-on-G5K demo:
WalT website:
Questions, WalT training requests:

https://vu.fr/walt-on-g5k
https://vu.fr/walt
mailto:etienne.duble@imag.fr

	Motivation
	Sample use case
	WalT & fast OS prototyping
	OS deployment rework
	Related news

