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A word about Grid’5000

G5K: What is it?
e Infrastructure as a Service

e 8 sites in France

e Accessible to academic community



A word about WALT

WALT: What is it?
e Software to build your own versatile platform

e AFAIK deployed in 4 labs (France, Turkey) and
at Schneider Electric

e Open source project
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Why WALT on G5K?

e Why WALT on G5K?

1. "l want to run my WALT experiment

unmodified on a larger testbed"
2. WALT could bring some useful features on top
of G5K

e fast OS prototyping
e seamless multi-site experiments

3. It could be an entrypoint for new users who
want to try WALT
e Limits:
e Features are limited to what both platforms
can do (simplified G5K resources selection,
wired network only, no physical access to

devices, etc.)
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use case

$ ssh grenoble.g5k

T e <AIITE R

| = H

<A ITTE

. — “
=
4 i 3
K <A 3
. s \
K AT \
I‘ k.
;. .
K s
4 . .
L G5K Lille Y
.
.
.
B
.
B
.
.
.



use case

T e <AIITE R

| = H

<A ITTE

. — “
=
4 i 3
K <A 3
. s \
K AT \
I‘ k.
;. .
K s
4 . .
L G5K Lille Y
.
.
.
B
.
B
.
.
.



Sample use case

d as d kLA ZATI "
c 'i:'l_"‘ r ; AT « (I R
ZAIIE —
. — - CoN y
y E i I ANE .
. <A1 1 —mH H ZATE .
. ST odes s
0 Nodes v
:‘ Y
q \
K G5K Grenoble G5K Lille )
e i H R
. .
. H f Frontend
.
B




Sample use case

$ ssh grenoble.g5k
> pip3 install walt-client[g5k]

.

coun

, fo =

Bt
,* | WALT client
P ~,




Sample use case
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Sample use case

> walt g5k deploy
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use case
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> walt g5k deploy
which resources?
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Sample use case
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Sample use case

> walt g5k deploy
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Fast OS prototyping using WalT

WalT allows fast OS prototyping:
e You can modify an OS image very easily...
e walt image shell <image> (among other commands)
e ... and save your changes in a few seconds
(relies on docker image layered approach)
e You can deploy an OS image on nodes quickly:
e walt node boot <nodes> <image>
e Nodes are usually booted in less than 1 min
(on a local testbed with Raspberry Pi boards)
e Reproducibility is ensured at each node reboot

e Nodes are stateless
e Changes made wrt. image files are discarded on reboot



OS deployment rework



WalT node deployment

How is OS deployment handled by WalT?



WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure



WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot



WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)



WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)

e Server exposes content of OS image as an NFS network share



WalT node deployment

How is OS deployment handled by WalT?

e As a regular network boot procedure

About network boot

e OS image remains on walt server only
(it is never transfered as a whole to the node)

e Server exposes content of OS image as an NFS network share

e When booted, the whole OS of node is seated on this NFS share
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WalT node deployment — avoiding TFTP

e Goal: Improve the slow bootloader step in case B
e Diagnosis:
e Kernel and initrd (=30MB) downloaded from server site to node site

e iPXE bootloader uses TFTP protocol for this
e Transfers need ~30 000 round-trips between sites to complete!

e Solution: let iPXE use HTTP instead of TFTP.
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WalT node deployment — avoiding hardware reboot

e Goal: Avoid hardware reboot

e ldea: Kexec technique can be used to directly boot a new kernel
(bypassing hardware reboot)
e Solution:
e Implement this kexec-boot in [image] :/bin/walt-reboot
e Mimic network bootloader behaviour:
download and boot the kernel of the new image
(not the current one!)
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WalT node deployment — avoiding NFS

e Goal: Reduce OS boot delay in case B
e Diagnosis: NFS is slow when client-server latency is high.

e Solution: use NBFS instead.

About NBFS

e An experimental network filesystem | am working on.

Specialized for network booting.

Uses speculation: good performance even when latency is high.

Improves responsiveness after bootup too (e.g. reduced ssh login delay).

A research paper is being written with R.Lachaize, F.Rousseau, A.Duda.
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WalT node deployment — avoiding NFS

e New numbers with NBFS instead of NFS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast fast
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~15s

Total procedure ~20s ~20s
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WalT node deployment — avoiding NFS

e New numbers with NBFS instead of NFS:

Step | Description Delay A | Delay B
0 Server: Route requests to new image fast fast
1 Node (walt-reboot): get kernel & initrd fast fast
2 Node (walt-reboot): kexec new kernel fast fast
3 Node: Wait for OS boot ~15s ~15s

Total procedure ~20s ~20s

e Result: similar delay for remote and local bootup.
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Related news

e NBFS is still experimental
e WalT-on-G5K feature planning:

e available with WALT version 8 (end of june)
e NBFS will not be included
e we are discussing with G5K team for improvements / documentation etc.

e G5K team is working on improving kadeploy with kexec too
(near future)
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More info:

WalT-on-G5K demo:
WalT website:
Questions, WalT training requests:



https://vu.fr/walt-on-g5k
https://vu.fr/walt
mailto:etienne.duble@imag.fr
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