
Designing fault-tolerant multi-threaded applications for
Non-Volatile Memory using checkpoints

Ana Khorguani

Thomas Ropars, Noel De Palma
LIG - team ERODS

May 27, 2021

1



What is Non-Volatile Memory?

Historically, memory was divided into two parts:

Storage (SSD, HDD)

Volatile memory (DRAM)

Non-Volatile Memory offers best from the both worlds:

Support for data persistence

Byte-addressability (accessed by CPU’s load and store instructions)

Performance on par with DRAM

Faster than any storage device with orders of magnitude
Around 6 times slower than DRAM

2



Non-Volatile Memory Modules

NVM memory modules became available from 2019

Figure: Intel Optane Persistent Memory

3



NVM configurations

1 NVM represents the main memory, while DRAM is seen as another
layer of the cache

2 DRAM and NVM, both are parts of the main memory

4



Motivation

The motivation of our work is:

Using NVM for fault tolerance

Handle consistency of the data structures

Maintaining high performance

The frequency of persisting data on NVM will affect performance

5



Non-Volatile Memory

New memory hierarchy:

Volatile

Caches
DRAM

Persistent

NVM

On cache line evictions, updated
cache lines are possibly written back
out of order to NVM

6



Consistency issues

Now we care about the data movement from cache to NVM:

Expected final state of the data structure in NVM:

7



Consistency issues

What if the system crashes after modifying the pointer without updating
the data block?

8



Intel processor flush instructions

Intel explicit flush instruction:

Clwb (@address)

Introduces high overhead due to:

Invalidating the cache lines

Putting restrictions on out-of-order executions

9



Our approach

We propose an algorithm that allows the data structures that are stored in
NVM to be restored in a consistent state after a failure, while achieving
good performance

Our technique is based on:

Checkpoints

The program execution is divided into epochs
At the end of the epoch, the data is persisted by flushing the entire
content of the cache

10



Our approach

Our checkpoint technique is completed with:

In-Cache-Line Log

An efficient undo log, without need of flush instructions
The log entries are in the same cache lines as the data fields
Relies on Persistent Cache Store Order (PCSO) memory ordering model

Checkpoint atomic sections (CASEs)

Guarantee that the epochs end only when the data is consistent
Guarantee that critical sections are executed with respect of the
checkpoints

11



Experimental setup and Workloads

Hardware and software setup:

Two Intel Xeon Gold 5218 CPUs (64 logical cores)

384 GiB of DRAM and 1.5 TiB of Intel’s Optane DC Persistent
Memory

Checkpoint frequency - 64 msec

We evaluate 2 benchmarks:

A highly efficient concurrent data structure: MS-Queue

A data-parallel computation: PARSEC Swaptions app

12



Performance with MS-Queue

Comparison with solutions based on flush-after-write

Highest overhead for our solution: 30%

Up to 6× better than flush-after-write

13



Performance with Swaptions app

Comparison with PMThreads runtime library (to our knowledge, the best
existing checkpoint-based technique)

The overhead for our solution: 20%

Up to 2.5× better than the best version of PMThreads

14



Conclusion

We presented Non-Volatile Memory and described the challenges of
designing the fault-tolerant algorithms:

Consistency issues

Impact on performance

By evaluating our checkpointing algorithm on real hardware, we illustrated:

The overhead of our solution is as low as 20-30%

Our solution outperforms state-of-the-art techniques

Future Work:

Optimizing persisting data on NVM

Automatizing the modification of the code

15



Thank you for your attention

16


	Introduction
	Conclusion

