IOOpt: Automatic Derivation of I/O Complexity Bounds for Affine Programs

Auguste Olivry Guillaume looss Nicolas Tollenaere
Atanas Rountev P. Sadayappan Fabrice Rastello
June 2021

What is I/O complexity?

- Arithmetic complexity $=\#$ of operations

What is I/O complexity?

- Arithmetic complexity $=\#$ of operations

What is I/O complexity?

- Arithmetic complexity = \# of operations

What is I/O complexity?

- Arithmetic complexity $=\#$ of operations
- I / O cost (schedule-dependent) $=$ amount of data moved between fast and slow memory

What is I/O complexity?

- Arithmetic complexity $=\#$ of operations
- I / O cost (schedule-dependent) $=$ amount of data moved between fast and slow memory
- I/O complexity $=$ minimum cost

Lower and Upper Bounds

IOLB (PLDI '20)
Automated lower
bound computation

Lower and Upper Bounds

IOLB (PLDI '20)
Automated lower bound computation

100pt (This paper)

- Improvement of the lower bound algorithm
- Automated upper bound derivation (IOUB)

I/O Upper Bounds

I/O complexity upper bound \Leftrightarrow Cost of a particular valid schedule

Untiled matrix multiplication

```
for(i = 0; i < N; i++)
    for(j = 0; j < N; j++)
        for(k = 0; k < N; k++)
            C[i][j] += A[i][k] * B[k][j];
```

I/O cost: $O\left(N^{3}\right)$

Tiled matrix multiplication

```
for(i1 = 0; il < N; i1+=Ti)
    for(j1 = 0; j1 < N; j1+=Tj)
        for(k = 0; k < N; k++)
        for(i = i1; i < il+Ti; i++)
    for(j = j1; j < j1+Tj; j++)
                            C[i][j] += A[i][k] * B[k][j];
I/O cost: \(O\left(\frac{N^{3}}{\sqrt{5}}\right)\)
```

\rightarrow How to automatically compute I/O cost for a given schedule?

Upper bound derivation

Matrix multiplication I/O complexity

$$
\frac{2 N_{i} N_{j}\left(N_{k}-1\right)}{\sqrt{S}} \leq 1 O_{m m} \leq \frac{2 N_{i} N_{j} N_{k}}{\sqrt{S+1}-1}
$$

In the paper: Analytical results on several convolutions (Yolo9000) and tensor contractions (TCCG), with matching lower and upper bounds

TTile: Highly Optimized Tensor Computations

- Multi-level tiling driven by IOOpt model
- Microkernel: highly tuned "basic block" (vectorization, register reuse, instruction-level parallelism)

I/O: model-driven tiling (IOOpt)

```
for(kt = 0; kt < Nk; kt+=128)
    for(it = 0; it < Ni; it+=32)
        for(jt = 0; jt < Nj; jt+=6)
            for(k = kt; k < kt+128; k++)
                \mukernel_gemm(A, B, C, i1, j1, k)
```

CPU: microkernel selection

TTile: Highly Optimized Tensor Contractions

Performance comparison between AutoTVM, oneDNN, and TTile+TVM for AVX512 (Intel Xeon Gold 6130), shown as percentage of machine peak. 32 threads were used, no hyperthreading

Demo

Thank you!

