
Introduction Main concepts Usage examples Conclusion

Introduction to the Nix Package Manager

Millian Poquet

2021-05-27 — Workshop of the LIG Axes

1 / 9

Introduction Main concepts Usage examples Conclusion

Introduction

Our use case

Develop, test, distribute software (OAR, Melissa, Batsim. . .)
Define and run controlled experiments

How Nix can help?

Define/manage/customize packages and their dependencies
Reproducible/deterministic packages
Run code in controlled environments

2 / 9

Introduction Main concepts Usage examples Conclusion

Summary

1 Nix’s main concepts
2 What we do with it
3 Conclusion and additional resources

3 / 9

Introduction Main concepts Usage examples Conclusion

Concept 1 — How to store the packages?

/usr
├── bin
│ └── myprogram
└── lib
 ├── libc.so
 └── libmylib.so

Usual (non Nix) approach: Merge them all

Default environment all the time (or hacked manually by user)
PATH set to /usr/bin (or similar)
LD_LIBRARY_PATH set to /usr/lib (or similar)
LIBRARY_PATH set to /usr/lib (or similar)

Huge limitation on package variation
Conflicts, as present implies accessible here
Files do not have well-defined needs

4 / 9

Introduction Main concepts Usage examples Conclusion

Concept 1 — Nix Store
/nix/store
├── y9zg6ryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27
│ └── lib
│ └── libc.so
└── nc5qbagm3wqfg2lv1gwj3r3bn88dpqr8-mypkg-0.1.0
 └── bin
 └── myprogram
 └── lib
 └── libmylib.so

Nix approach: Keep them separated

Convenient package variation
Different package source → Different store path
Files have precise dependencies
(DT_RUNPATH in ELFs, wrappers for PYTHONPATH. . .)

Can install in default environment (tune PATH. . .)
Isolated environments (enter shell with well-defined PATH. . .) 5 / 9

Introduction Main concepts Usage examples Conclusion

Concept 2 — Expressions, derivations, functions

Descriptive approach

Define packages/environments in a DSL (also called Nix)
Derivation = build action that populates the store
Most of the time, package = function that returns a derivation

Inputs: dependencies, build systems, source, build script
Outputs: trees of files to write in the store

Convenient customization

Can override a package to change its inputs
Sources for a apecific version of your soft
Add or change a dependency

Can also override phases of the build script

6 / 9

Introduction Main concepts Usage examples Conclusion

Concept 3 — How to achieve reproducible builds?

Main ideas

Package description
Default phases rarely need customization
Only customize what you need, do not write full build scripts

Pure build environment (depends on arch, not system)
Compilers told to use generic instruction sets by default
Build in a sandbox/jail

No network access (inputs such as sources are fetched before)
No filesystem access (unless it is an input)
No ipc accesses (unless part of your build)
No time accesses: back to epoch we go

Key advantages

Makes it really hard to change behavior depending on weather
Do not miss dependencies anymore

7 / 9

Introduction Main concepts Usage examples Conclusion

What we do with Nix in a nutshell

Batsim
λ

SimGrid
λ

Write Nix expressions.

8 / 9

Introduction Main concepts Usage examples Conclusion

What we do with Nix in a nutshell

Batsim
λ

SimGrid
λ

NUR-Kapack

Put them in a Git repository.

end-user

8 / 9

Introduction Main concepts Usage examples Conclusion

What we do with Nix in a nutshell

Batsim
λ

SimGrid
λ

NUR-Kapack

My-groundbreaking-experiment

NUR-Kapack (commit=XXX)

Use them for your experiment.

8 / 9

Introduction Main concepts Usage examples Conclusion

What we do with Nix in a nutshell

Batsim
λ

SimGrid
λ

NUR-Kapack

My-groundbreaking-experiment

NUR-Kapack (commit=XXX)

Batsim
λ

(commit=AAA)
(optim=A)

SimGrid
λ

(commit=XXX)
Batsim
λ

(commit=BBB)
(optim=A)

Customize them.

8 / 9

Introduction Main concepts Usage examples Conclusion

What we do with Nix in a nutshell

Batsim
λ

SimGrid
λ

NUR-Kapack Batsim
NUR-Kapack (master)

Batsim
λ

(local src)
(debug)

SimGrid
λ

(debug)

My-groundbreaking-experiment

NUR-Kapack (commit=XXX)

Batsim
λ

(commit=AAA)
(optim=A)

SimGrid
λ

(commit=XXX)
Batsim
λ

(commit=BBB)
(optim=A)

Use them for dev,
including CI.

8 / 9

Introduction Main concepts Usage examples Conclusion

Take home message

Nix: Reproducible packages/environments

Descriptive approach for packages/environments
Multilanguage virtualenv → lightweight containers
Steep learning curve, worth it for complex software or repro

Additional resources

1-hour introduction presentation (french) 1

Tutorial on Nix for reproducible experiments 2

Nix official website 3 — install, getting started. . .
Nix pills 4 — how Nix works

1. https://mpoquet.github.io/research.html#presentations-tutorials
2. https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial
3. https://nixos.org
4. https://nixos.org/guides/nix-pills

9 / 9

	Introduction
	Main concepts
	Usage examples
	Conclusion

