Towards resource aware AI development: AI simulation

Danilo Carastan dos Santos

Université Grenoble Alpes, Grenoble INP, Inria, LIG, France
email: danilo.carastan-dos-santos@inria.fr

May 12, 2022
Neural Network development has become too costly

Figure source

Example: Evolved Transformer2 (NLP)

- Very large search space: $7.3 \cdot 10^{115}$ models
- Evolutionary algorithm to search for good models
- They discard “bad” models quickly, saving computation
- All of this to make it feasible, but...

It still too costly

Some performance information:

- They performed two experiments
 1. To validate the evolutionary algorithm search (446M training steps)
 2. To perform the “main” model search (979M training steps)

- 300k training steps → 10 hours with 1 Google TPU V.2 chip
 (specialized hardware)
 - 14866 TPU hours for the first experiment, and 32633 TPU hours
 for the second
 - 47499 TPU hours in total

Putting in more understandable numbers...
TDP of a Google TPU v2 is 280 watts, and the PUE of the data center (europe-west4) is 1.11.

Europe-west4 costs 4.95 USD/TPU hour for on-demand (non preemptible) reservations.

Europe-west4 server electricity is 60% carbon free, and it has 410 gCO2/kWh of carbon intensity for the remaining 40%.

235000 USD paper

2421 KgCO2 in emissions for the paper

Four round trips Paris/NY in CO2 emissions.

3 https://cloud.google.com/tpu/docs/types-zones#europe
5 https://cloud.google.com/tpu
6 https://cloud.google.com/sustainability/region-carbon
7 A round trip Paris New York is around 606 KgCO2 according to google flights.
Research Gaps

- **Gap 1: AI development is becoming computationally expensive or impossible**
 - The literature under explores resource efficiency in training
 - Ultra expensive methods are less accessible and lead to technology monopolization
 - We can share pretrained models and code (e.g., Facebook\(^8\)), but do we have the means to change and retrain the models to suit our needs/desires?

- **Gap 2: Conducting reproducible experiments with AI methods is difficult**
 - For the same reasons as gap 1
 - 235 thousand dollars to reproduce the experiments of the Evolved transformer paper
 - Good luck if you want to make some variations

\(^8\)https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
How can we help in this problem?

“Do better with less”: Develop efficient AI models with less (or within a budget) resources (computing nodes, time, energy, etc.)

One step towards this goal: Develop frameworks for *in silico* (simulation) experiments for AI research and development

With simulation we can:

- **Know in advance resource metrics** (e.g., execution time, data throughput, power consumption) that may guide decision-making, especially in neural architecture search
- **We can search for AI models with less resources**, by simulating the training instead of actually training the models during architecture search
Challenges/Risks

What seems to be (easily) feasible

- We can transfer HPC simulation for AI
 - Everything is distributed computing in the end
 - We can instrument AI applications to extract and model the performance behavior

What seems to be challenging

- How neural network architecture configurations correlate to resource usage?
 - Can we easily model this correlation?
 - Is the configuration search space too large?

What may be very hard/impossible

- How to estimate final model accuracy without training?
 - Accurate estimates may be impossible to give
 - Extrapolation methods? Literature sourcing?
Towards resource aware AI development: AI simulation

Danilo Carastan dos Santos

Université Grenoble Alpes, Grenoble INP, Inria, LIG, France
email: danilo.carastan-dos-santos@inria.fr

May 12, 2022