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Goal: learning how to map state
vectors to arms so as to maximize
a numerical reward in an unknown

and uncertain environment.
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Goal: learning how to map state
vectors to arms so as to maximize
a numerical reward in an unknown

and uncertain environment.

Exploitation: act greedily based on
the observations collected so far.
Exploration: collect more
observations.

Challenge: best trade-off between
exploitation and exploration.
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The Optimism Principle

Optimism in Face of Uncertainty:
When you are uncertain, consider the best possible environment
(reward-wise).
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The Optimism Principle

Optimism in Face of Uncertainty:
When you are uncertain, consider the best possible environment
(reward-wise).

If the best possible environment is If the best possible environment is

correct wrong
=> no reward lost => |earn useful information
Exploitation Exploration

— Build confidence set for each pair (1}, P;)
= Choose (73, P;)ie[n] such that (7, P) is the best possible environment



. PC(O | H) P(H)
Posterior Sampling  P(H|0) =

P(0)



POSte r| or Sa M p ‘ | ﬂg (a.k.a Thompson Sampling [Thompson, 1933])

Posterior Sampling:
Hypothesis: the environment is sampled from a certain distribution.

Sample an environment from posterior distribution and act greedily.
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POSte r| or Sa M p ‘ | ﬂg (a.k.a Thompson Sampling [Thompson, 1933])

Posterior Sampling:
Hypothesis: the environment is sampled from a certain distribution.

Sample an environment from posterior distribution and act greedily.

More observations Few observations

=> posterior concentrates on the => uncertainty in the estimate
true environment Exploration
Exploitation

—> Choose prior distribution ¢; for each arm i
— Compute posterior ¢;( -] 0) and sample each pair (r;, P;) ~ ¢;(+1 0)



Our Result

e Runtime:

* When (7, P) is given, an optimal solution (Gittins index policy) can be
computed in (2/3)nS3 + 0(nS?) [Gast et al., 2022]

* The imaginary environment of both approaches is a Markovian bandit, Gittins
index policy is applicable

* Learning Performance:
* Keeping the estimate of (7}, P;)g[n is linearinn

=> Both approaches are scalable.



Conclusion

* We show how the Optimism and Posterior Sampling approaches can
be used to learn Markovian bandit problem.

* We conclude that both approaches are scalable in the number of
arms.

Future Work

* What if the non-active arms also change state?



