Reinforcement Learning for Markovian Bandit: Is Posterior Sampling more Scalable than Optimism?

LIG WAX: May 12, 2022

Kimang KHUN

Supervised by Nicolas GAST and Bruno GAUJAL

Table of Content

- Problem Statement
- Learning Approaches
 - Optimism
 - Posterior Sampling
- Our Result
- Conclusion

Problem Statement

<u>Goal</u>: learning how to map state vectors to arms so as to maximize a numerical reward in an unknown and uncertain environment.

Problem Statement

<u>Goal</u>: learning how to map state vectors to arms so as to maximize a numerical reward in an unknown and uncertain environment.

Exploitation: act greedily based on the observations collected so far.Exploration: collect more observations.

Problem Statement

<u>Goal</u>: learning how to map state vectors to arms so as to maximize a numerical reward in an unknown and uncertain environment.

Exploitation: act greedily based on the observations collected so far.Exploration: collect more observations.

<u>Challenge</u>: best **trade-off** between exploitation and exploration.

Optimism in Face of Uncertainty:

When you are uncertain, consider the **best possible environment**

(reward-wise).

Optimism in Face of Uncertainty:

When you are uncertain, consider the **best possible environment**

(reward-wise).

<u>Optimism in Face of Uncertainty</u>: When you are uncertain, consider the **best possible environment** (reward-wise).

<u>Optimism in Face of Uncertainty</u>: When you are uncertain, consider the **best possible environment** (reward-wise).

<u>Optimism in Face of Uncertainty</u>: When you are uncertain, consider the **best possible environment** (reward-wise).

Optimism in Face of Uncertainty: When you are uncertain, consider the **best possible environment** (reward-wise).

Parameter Space

Optimism in Face of Uncertainty: When you are uncertain, consider the **best possible environment**

(reward-wise).

Parameter Space

Optimism in Face of Uncertainty:

When you are uncertain, consider the **best possible environment** (reward-wise).

If the best possible environment is	If the best possible environment is
correct	wrong
=> no reward lost	=> learn useful information
Exploitation	Exploration

⇒ Build confidence set for each pair (r_i, P_i) ⇒ Choose $(\overline{r_i}, \overline{P_i})_{i \in [n]}$ such that $(\overline{r}, \overline{P})$ is the **best possible environment**

Posterior Sampling

$\mathbb{P}(H \mid O) = \frac{\mathbb{P}(O \mid H) \mathbb{P}(H)}{\mathbb{P}(O)}$

<u>Posterior Sampling</u>: Hypothesis: the **environment** is sampled from a **certain distribution**. **Sample an environment** from posterior distribution and **act greedily**.

Parameter Space

<u>Posterior Sampling</u>: Hypothesis: the **environment** is sampled from a **certain distribution**. **Sample an environment** from posterior distribution and **act greedily**.

<u>Posterior Sampling</u>: Hypothesis: the **environment** is sampled from a **certain distribution**. **Sample an environment** from posterior distribution and **act greedily**.

<u>Posterior Sampling</u>: Hypothesis: the **environment** is sampled from a **certain distribution**. **Sample an environment** from posterior distribution and **act greedily**.

Parameter Space

Posterior Sampling:

Hypothesis: the **environment** is sampled from a **certain distribution**. **Sample an environment** from posterior distribution and **act greedily**.

More observations	Few observations
=> posterior concentrates on the	=> uncertainty in the estimat
true environment	Exploration
Exploitation	

 \Rightarrow Choose prior distribution ϕ_i for each arm i

 \Rightarrow Compute posterior $\phi_i(\cdot | 0)$ and sample each pair $(r_i, P_i) \sim \phi_i(\cdot | 0)$

Our Result

- Runtime:
 - When (r, P) is **given**, an optimal solution (Gittins index policy) can be computed in $(2/3)nS^3 + O(nS^2)$ [Gast et al., 2022]
 - The imaginary environment of both approaches is a Markovian bandit, Gittins index policy is **applicable**
- Learning Performance:
 - Keeping the estimate of $(r_i, P_i)_{i \in [n]}$ is linear in n
- => Both approaches are scalable.

Conclusion

- We show how the Optimism and Posterior Sampling approaches can be used to learn Markovian bandit problem.
- We conclude that both approaches are scalable in the number of arms.

Future Work

• What if the non-active arms also change state?